Dimensions of Spline Spaces over Unconstricted Triangulations
نویسنده
چکیده
One of the puzzlingly hard problems in Computer Aided Geometric Design and Approximation Theory is that of finding the dimension of the spline space of C piecewise degree n polynomials over a 2D triangulation Ω. We denote such spaces by Sr n(Ω). In this note, we restrict Ω to have a special structure, namely to be unconstricted. This will allow for several exact dimension formulas.
منابع مشابه
A note to “imensions of spline spaces over unconstricted triangulations”[J
Let Ω be a regular triangulation of a two dimensional domain and S n(Ω) be a vector space of functions in C r whose restriction to each small triangle in Ω is a polynomial of total degree at most n. Dimensions of bivariate spline spaces S n(Ω) over a special kind of triangulation, called the unconstricted triangulation, were given by Farin in the paper [J. Comput. Appl. Math. 192(2006), 320-327...
متن کاملBivariate Spline Spaces on FVS-triangulations
Ming-Jun Lai Abstract. FVS-triangulation is a special but very exible triangulation. We survey the results on bivariate spline spaces over such triangulations. x
متن کامل000 Society for Industrial and Applied Mathematics Dimension and Local Bases of Homogeneous Spline Spaces*
Recently, we have introduced spaces of splines deened on triangulations lying on the sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-B ezier theory on such surfaces. The purpose of this paper is to contribute to the development of a constructive theory for such spline spaces analogous to the well-known theory of polynomial splines on planar triangula-tions. ...
متن کاملDimension and Local Bases of Homogeneous Spline Spaces
Recently, we have introduced spaces of splines deened on trian-gulations lying on the sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-B ezier theory on such surfaces. The purpose of this paper is to contribute to the development of a constructive theory for such spline spaces analogous to the well-known theory of polynomial splines on planar triangulations. ...
متن کاملOn the Approximation Power of Splines on Triangulated Quadrangulations
We study the approximation properties of the bivariate spline spaces S r 3r (} +) of smoothness r and degree 3r deened on triangulations } + which are obtained from arbitrary nondegenerate convex quadrangulations by adding the diagonals of each quadrilateral. Suppose } is a nondegenerate convex quadrangulation of a polygonal domain in IR 2 (see Sect. 6 for details on quadrangulations and techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005